SIP: Session Initiation Protocol

From HTTP and Session Invitation to Setup and Control for Packet-based Multimedia Conferencing

Conference Establishment & Control

Workshop
1. Create
Descr.: Upperside SIP 2005
Orig.: J.Ott jo@tzi.org 327689113
Info: http://www.tzi.org/dmn/
Start: 25.01.2005 / 09:30
End: 25.01.2005 / 17:30
Media: Audio PCM 234.5.6.7/39000
Media: Video H.263 234.5.6.8/29000
Media: Slides PDF 234.5.6.9/49000

2a. Announcement
 → Announcement Protocol
 → Netnews
 → WWW

2b. Invitation
 → E-Mail
 → Invitation Protocol

2c. Request
 → Streaming Protocol

3. Join

4. Media streams
History of Mbone conference initiation

Session Invitation Protocol

(Handley/Schooler)

- Participant location
- Conference invitation
- Capability negotiation during setup

Simple Conference Invitation Protocol

(Schulzrinne)

- Participant location
- Conference invitation
- Capability negotiation during setup
- Changing conference parameters
- Terminate/leave conference

1996 Session Initiation Protocol

Session Initiation Protocol (SIP)

First draft in December 1996

- Joint effort to merge SIP and SCIP
- IETF WG MMUSIC
 (Multiparty Multimedia Session Control)

Application-layer call signaling protocol:

- Creation, modification, termination of teleconferences
- Negotiation of used media configuration
- Re-negotiation during session
- User location → personal mobility
- Security
- Supplementary services

RFC 3261
- June 2002
- obsoletes RFC 2543
SIP and Conferencing over Time…

- Origin: MMUSIC: Multiparty Multimedia Session Control
- From Invitation… to initiation, modification, and termination
- From Multiparty… to point-to-point-focused
- From Multimedia… to voice-centric

Now: Multiparty & multimedia rediscovered

But: Don’t believe in multicast (anymore)!

Timeline: 1996

Initial Internet Drafts:
- Session Invitation Protocol (SIP) – M. Handley, E. Schooler
- Simple Conference Invitation Protocol (SCIP) – H. Schulzrinne

SIP: Setup + Caps Negotiation
SCIP: Setup + Caps Modify + Terminate
Merged Draft: SIP -01
Main Features set: TCP/UDP, Forking, Redirection, addr
INVITE,CAPABILITY
From: To: Path:

Presentations at 35th IETF, Los Angeles

22 Feb 1996 4-8 Mar 1996 2 Dec 1996
Timeline: 1997

- **Draft SIP -02**: Formal syntax
 - CAPABILITY → OPTIONS
 - Path: → Via:
 - Ideas for Alternates:

- **IETF Action**: Split SIP into base spec and extensions

- **Draft SIP -03**: SIP URL: sip://jo@...
 - CONNECTED, BYE, REGISTER
 - Call-ID: Sequence: Allow: Expires:

- **Dec 97**:

Timeline: 1998

- **SIP -05**:
 - CANCEL
 - UNREGISTER → Ø
 - URL sip://jo → sip:jo
 - Record-Route:
 - IANA assignments
 - Security Cons. Sect.

- **IETF Action**: Last Call for Proposed

- **SIP -07**: Call Hold SDP

- **Clarifications & fixes**: Cleaning up the spec
 - Call-ID: MUST tag parameter

- **SIP -08**

- **SIP -09**

- **8 Aug 18 Sep 28 Sep**
Timeline: 1998/99

SIP -10
No more DNS MX
URI: RFC 2396

SIP -11
Update on SDP part

SIP -12
DNS Lookup
Tidying up

IETF Action: Approval for Proposed Standard

IETF Action: Published as RFC 2543

IETF Action: Approval for Proposed Standard

12 Nov 98 15 Dec 98 15 Jan 99 2 Feb 99 17 Mar 99 Sep 99

Timeline: RFC2543bis (2000/2001)

bis -00
IETF Action: Formation of new SIPPING WG

bis -01
PGP removed

bis -02
Spring 01

bis -03
PGP removed

bis -04
Complete Rewrite!

bis -05
Complete Rewrite!

13 Jul 00 24 Nov 00 29 May 01 20 Jul 01 26 Oct 01 28 Nov 01

- **bis -07**
 - Offer/answer
 - Loose src route

- **bis -06**
 - TCP mandatory
 - 1xx-reliability

- **bis -08**
 - Sips URI
 - 1xx-reliability
 - In separate doc

- **bis -09**
 - IETF Last Call

- **IETF Action:**
 - RFC 3261–3266

- **SIP-related RFC Rallye:**
 - RFC 3361, 3372
 - RFC 3311, 3312
 - RFC 3323–3325, 3329 (Security)
 - RFC 3398, 3420, 3428
 - RFC 3320–3322 (SigComp)

- Until Jan 03

"Weight" of SIP Base Spec

<table>
<thead>
<tr>
<th># pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>300</td>
</tr>
<tr>
<td>250</td>
</tr>
<tr>
<td>200</td>
</tr>
<tr>
<td>150</td>
</tr>
<tr>
<td>100</td>
</tr>
<tr>
<td>50</td>
</tr>
<tr>
<td>0</td>
</tr>
</tbody>
</table>

© 2007 Jörg Ott
IETF SIP-related Working Groups (1)

- MMUSIC WG
 - RFC 2543 (Feb 1999)
 - Sep 99

- SIP WG
 - Mar 01

- SIPPING WG
 - Dec 00

- SIMPLE WG
 - Oct 03

- XCON WG

IETF SIP-related Working Groups (2)

- MMUSIC WG
 - SDP extensions
 - SDPng

- SIP WG
 - SIP core spec maintenance
 - SIP protocol extensions

- SIPPING WG
 - Requirements for SIP
 - Specific SIP application services

- SIMPLE WG
 - SIP for Presence and Instant Messaging

- XCON WG
 - Centralized Conferencing
"Productivity" (1): Internet Draft Pages

(rough estimate with errors)

"Productivity" (2): RFC Pages

For exclusive use with TKK Netlab course S-38.3150 Networked Multimedia Protocols and Services
RFCs related to SIP (1)

- Original base spec
 - RFC 3261: SIP: Session Initiation Protocol
 - RFC 3263: Locating SIP Servers
 - RFC 3264: An Offer/Answer Model with SDP

- Extended Features
 - RFC 2376: The SIP INFO Method
 - RFC 3262: Reliability of Provisional Responses in SIP
 - RFC 3265: SIP-specific Event Notification
 - RFC 3311: SIP UPDATE Method
 - RFC 3312, RFC 4032: Integration of Resource Management and SIP
 - RFC 3326: Reason Header
 - RFC 3327: Registering Non-Adjacent Contacts
 - RFC 3428: Instant Messaging
 - RFC 3487: Requirements for Resource Priority
 - RFC 3515: SIP REFER Method
 - RFC 3581: Symmetric Message Routing
 - RFC 3660: SIP event package for registrations
 - RFC 3725: Third-party Call Control (3PCC)
 - RFC 3840, 3841: Callee capabilities and caller preferences
 - RFC 3842: Message waiting indication / message summary
 - RFC 3857, 3958: Watcher Information event package + XML format
 - RFC 3891: Replaces: header
 - RFC 3892: Referred-By: header
 - RFC 3903: Event state publication (SIP PUBLISH method)
 - RFC 3911: Join: header
 - RFC 4028: Session timers
 - RFC 4168: SCTP as transport protocol
RFCs related to SIP (2)

- Extended features (continued)
 - RFC 4244: Request history
 - RFC 4320: Addressing issues with non-INVITE transactions
 - RFC 4412: Communications resource priority for SIP
 - RFC 4483: Content indirection in SIP
 - RFC 4488: Suppressing implicit subscriptions of REFER
 - RFC 4508: Conveying feature tags with REFER
 - RFC 4235: INVITE-initiated dialog event package
 - RFC 4425: Requirements for SIP conferencing
 - RFC 4376: SIP conferencing framework
 - RFC 4376: Floor control requirements
 - RFC 4411: SIP Reason header for preemption
 - RFC 4453: Requirements for consent-based communications
 - RFC 4475: SIP torture test messages
 - RFC 4479: A data model for presence
 - RFC 4480: RPID: rich presence
 - RFC 4481: Extensions for timed presence
 - RFC 4482: CPID: Contact information in presence
 - RFC 4575: SIP conference event package
 - RFC 4576: SIP call control: conferencing for user agents
 - RFC 4596: Caller preferences extensions
 - RFC 4597: Conferencing scenarios
 - RFC 4660: Functional description of event filtering
 - RFC 4661: XML for event filtering
 - RFC 4662: Event notifications for resource lists
 - RFC 4730: Key Press Stimulus Event Package (KPML)
 - RFC 4916: Connected identity

RFCs related to SIP (3)

- Extended features (continued)
 - RFC 4825: XCAP
 - RFC 4826: XCAP Processing Rules for Resource Lists
 - RFC 4827: XCAP For Manipulating Presence Contents
 - RFC 4975: MSRP
 - RFC 4976: MSRP Relays

- Security
 - RFC 3323: A Privacy Mechanism for SIP
 - RFC 3325: Private Extension for Asserted Identity in Trusted Networks
 - RFC 3329: Security-Mechanism Agreement for SIP
 - RFC 3603: Proxy-to-Proxy Extensions
 - RFC 3702: AAA requirements for SIP
 - RFC 3853: S/MIME AES
 - RFC 3893: Authenticated Identity Body
 - RFC 4189: Requirements for end-to-middle security
 - RFC 4474: Enhancements for authenticated identity management
 - RFC 4484: Trait-based authentication requirements
 - RFC 4538: Request authorization through dialog identification
RFCs related to SIP (4)

- Others
 - RFC 3665, 3666: SIP Call Flows
 - RFC 3361: DHCP Option for SIP Servers
 - RFC 3608: Service Route Discovery
 - RFC 3398, 3578: ISUP and SIP Mapping
 - RFC 3420: Internet Media Type message/sipfrag
 - RFC 3427: SIP Change Process
 - RFC 3455: Header Extensions for 3GPP
 - RFC 3485, 3486: SIP header compression
 - RFC 3764, 3824: Using ENUM with SIP
 - RFC 3959: Early Session disposition type (early-session, session)
 - RFC 3960: Early Media and Ringing Tone Generation
 - RFC 3968, 3969: IANA SIP header field and URI registry
 - RFC 3976: SIP – IN Interworking
 - RFC 4117: 3rd party call control invocation of transcoding services
 - RFC 4123: SIP – H.323 Interworking requirements
 - RFC 4485: Guidelines for authors of SIP extensions
 - RFC 4497: SIP – QSIG interworking
 - RFC 4569: IANA media feature tag registration
 - RFC 4780: SIP MIB

- Related: RTP, SDP, Security basics, 3GPP requirements and extensions

A Hitchhikers Guide to the Session Initiation Protocol (SIP)
draft-ietf-sip-hitchhikers-guide-04.txt

SIP is not …

- Intended for conference control by itself
 - No floor control
 - No participant lists
 - No policies, voting, …

- Designed for distribution of multimedia data
 - Some extensions allow for carrying images, audio files, etc.

- A generic transport protocol!
- Another RPC mechanism
 - SIP has no inherent support for distributed state information
- Something to put into every device on the planet
 - No general IP infrastructure part (yet?)
- Nevertheless: Application layer routing gets more and more important
- (but proposals for “misuse” show up again and again)
SIP and the Multimedia Conferencing Architecture

Audio / Video

Conference Control

SDP

Call Control

SIP

RSVP

RTSP

RTP / RTCP

SAP

UDP

IP/IP Multicast

TCP, SCTP, TLS

Integrated Services Forwarding

Base Terminology

- User Agent Client (UAC):
 - Endpoint, initiates SIP transactions
- User Agent Server (UAS):
 - Handles incoming SIP requests
- Redirect server:
 - Retrieves addresses for callee and returns them to caller
- Proxy (server):
 - Autonomously processes and routes requests
 - forward incoming messages (limited modifications only)
- Registrar:
 - Stores explicitly registered user addresses
- Location Service:
 - Provides information about a target user’s location
- Back-to-Back User Agent (B2BUA):
 - Keeps call state; more powerful intervention than proxy
Local SIP Architecture

- **Administrative Entity (SIP Server)**
 - Registrar
 - Redirect / Proxy Server
 - Location Server

- **Endpoint**
 - SIP UA

- **Local IP network**

Protocol Characteristics

- **Transaction oriented**
 - Request–response sequences

- **Independent from lower layer transport protocol**
 - Works with a number of unreliable and reliable transports
 - UDP, TCP, SCTP
 - Secure transport: TLS over TCP, IPSec
 - Retransmissions to achieve reliability over UDP
 - Optionally use IP multicast \(\rightarrow \) anicast service

- **Independent of the session to be (re-)configured**

- **Re-use syntax of HTTP 1.1**
 - Text-based protocol (UTF-8 encoding)

- **Enable servers maintaining minimal state info**
 - Stateless proxies
 - Transaction-stateful proxies
 - Dialog (call) state in endpoints (optional for proxies)
Functional Layers

- **Transaction User**
 - Session creation, application-specific processing

- **Transaction**
 - Transaction handling
 - Request retransmission

- **Transport**
 - Send/receive SIP messages

- **Syntax / Encoding**
 - Message parsing

Transport Protocol
- UDP
- TCP
- SCTP
- TLS

SIP Transactions

- RPC-like approach:
 - Initial request
 - Wait for final response

- Provisional responses:
 - Additional status information
 - May be unreliable

- Unique identifier (transaction id): (originator, recipient, unique token, sequence number, ...)

- Independent completion
Dialogs

- Signaling vs. media session
- Distributed state between endpoints
 - State change if transaction succeeds
 - No change on error
- Unique dialog identifier

Dialog Example: Media Sessions

Special case: three-way handshake for INVITE transaction

INVITE → Ringing → OK → ACK → INVITE

prepare media session;
establish media session, dialog
media session in progress

early dialog

INVITE → OK → BYE → ACK

create media session, dialog
media session in progress
terminate media session

Media Streams

A
B

create media session, dialog
create media session, dialog

create dialog
modify dialog
create dialog
modify dialog
create dialog
modify dialog
create dialog
modify dialog
create dialog
modify dialog
create dialog
modify dialog
create dialog
modify dialog
create dialog
modify dialog
create dialog
modify dialog
create dialog
modify dialog
create dialog
modify dialog
create dialog
modify dialog
create dialog
modify dialog
create dialog
modify dialog
create dialog
modify dialog
create dialog
modify dialog
create dialog
modify dialog
create dialog
modify dialog
create dialog
modify dialog
create dialog
modify dialog
create dialog
modify dialog
create dialog
modify dialog
create dialog
modify dialog

SIP Message Syntax: Request

Start line

```
INVITE sip:user@example.com SIP/2.0
```

Message headers

```
To: John Doe <sip:user@example.com>
From: sip:jo@tzi.uni-bremen.de;tag=4711
Subject: Congratulations!
Content-Length: 117
Content-Type: application/sdp
Call-ID: 2342344333@134.102.218.1
CSeq: 49581 INVITE
Contact: sip:jo@134.102.224.152:5083
    ;transport=udp
Via: SIP/2.0/UDP 134.102.218.1;
    branch=z9hG4bK776asdhds
v=0
o=jo 75638353 98543585 IN IP4 134.102.218.1
s=SIP call
i=0 0
c=IN IP4 134.102.224.152
m=audio 47654 RTP/AVP 0 1 4
```

Message body (SDP content)

```
```

SIP Message Syntax: Response

Start line

```
SIP/2.0 200 OK
```

Message headers

```
To: John Doe <sip:user@example.com>;tag=428
From: sip:jo@tzi.uni-bremen.de;tag=4711
Subject: Congratulations!
Content-Length: 121
Content-Type: application/sdp
Call-ID: 2342344333@134.102.218.1
CSeq: 49581 INVITE
Contact: sip:jdoe@somehost.domain
Via: SIP/2.0/UDP 134.102.218.1;
    branch=z9hG4bK776asdhds
v=0
o=jdoe 28342 98543601 IN IP4 134.102.20.22
s=SIP call
i=0 0
c=IN IP4 134.102.20.38
m=audio 61002 RTP/AVP 0 1 4
```

Message body (SDP content)

```
```
SIP URI Addressing Scheme

- Follows basic URI syntax per RFC 2396
- Separating names (permanent) and addresses (temporary)
 - Basic mobility support
- Two roles reflected in SIP
 - Naming a user; typically sip:user@domain
 - Contact address of a user; typically contains
 host name or IP address, port, transport protocol, ...
- URIs may carry additional parameters

```
sip:[ user[ : passwd ] @ ] host[ : port ] params [ ? headers ]
```

```
params ::= ( ; name [ = value ] )*
headers ::= field = value? [ & headers ]
```

- URIs may also identify services

SIP URI Addressing Examples

- **sip:tzi.org**: Registration domain or IP address
- **sip:192.168.42.1**: SIP URI to call (Address of Record)
- **sip:john@example.com**: SIP Contact Address (actual user location)
- **sip:voicemail@service.com**: Service identifier; semantics opaque to the user
- **sip:conf-1234@confserv.com**
- **sip:user34@anonymizer.org**

Use URI scheme ‘sips’ to request secure communications.
SIP URI Addressing Examples (2)

URI parameters may carry detailed information on specific URI components:

```
sip:john@Example.COM;maddr=10.0.0.1
sip:+1555123456@tel-gw.myitsp.com;user=phone
```

Nested URI Encoding (e.g. for Service Description)

Encapsulation

```
sip:sip:3A1b%40.92.168.42.1%3Bmaddr=134.102.3.99@example.com
```

Need to encode reserved characters

Service indication example

```
sip:voicemail.replay=abl%X817m@media-engine;msgid=78
```

Additional header fields (line breaks inserted for readability)

```
sip:jo@example.com?Replaces=abcd@example.com%3B \
from=tag%3D234bto=tag%3D234abl&Accept-Contact= \
%3Ctip%3A5640134.102.218.1%3E%3Bonly%3Dtrue
```

Separator characters
URIs in Header Fields

URI-parameters vs. header parameters

Contact: sip:bob@p2.example.com:55060;methods="NOTIFY";expires=3600

→ angle brackets:

Contact: <sip:bob@p2.example.com:55060;methods="NOTIFY">;expires=3600

Required if
- URI contains comma, question mark or semicolon
- The header field contains a display name

Further Common URI Schemes

Telephony (RFC 2806)

tel:+1-555-12345678
tel:7595;phone-context=+49421218

ITU-T H.323 Protocol

h323:user@example.com

Instant Messaging

im:user@example.com

Presence

pres:user@example.com